Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We developed a new set of software tools that enable the speed and response kinetics of large numbers of tethered bacterial cells to be rapidly measured and analyzed. The software provides precision, accuracy, and a good signal-to-noise ratio combined with ease of data handling and processing. The software was tested on the single-cell chemosensory response kinetics of large numbers of Rhodobacter sphaeroides cells grown under either aerobic or photoheterotrophic conditions and either in chemostats or in batch cultures, allowing the effects of growth conditions on responses to be accurately measured. Aerobically and photoheterotrophically grown R. sphaeroides exhibited significantly different chemosensory response kinetics and cell-to-cell variability in their responses to 100 μM propionate. A greater proportion of the population of aerobically grown cells responded to a 100 μM step decrease in propionate; they adapted faster and showed less cell-to-cell variability than photosynthetic populations. Growth in chemostats did not significantly reduce the measured cell to cell variability but did change the adaptation kinetics for photoheterotrophically grown cells.

Original publication

DOI

10.1128/AEM.00341-11

Type

Journal article

Journal

Appl Environ Microbiol

Publication Date

06/2011

Volume

77

Pages

4082 - 4088

Keywords

Aerobiosis, Chemotaxis, Heterotrophic Processes, Image Processing, Computer-Assisted, Microbiological Techniques, Propionates, Rhodobacter sphaeroides, Software