Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Application of closed-loop approaches in systems neuroscience and brain-computer interfaces holds great promise for revolutionizing our understanding of the brain and for developing novel neuromodulation strategies to restore lost function. The anterior forebrain mesocircuit (AFM) of the mammalian brain is hypothesized to underlie arousal regulation of the cortex and striatum, and support cognitive functions during wakefulness. Dysfunction of arousal regulation is hypothesized to contribute to cognitive dysfunctions in various neurological disorders, and most prominently in patients following traumatic brain injury (TBI). Several clinical studies have explored the use of daily central thalamic deep brain stimulation (CT-DBS) within the AFM to restore consciousness and executive attention in TBI patients. In this study, we explored the use of closed-loop CT-DBS in order to episodically regulate arousal of the AFM of a healthy non-human primate (NHP) with the goal of restoring behavioral performance. We used pupillometry and near real-time analysis of ECoG signals to episodically initiate closed-loop CT-DBS and here we report on our ability to enhance arousal and restore the animal's performance. The initial computer based approach was then experimentally validated using a customized clinical-grade DBS device, the DyNeuMo-X, a bi-directional research platform used for rapidly testing closed-loop DBS. The successful implementation of the DyNeuMo-X in a healthy NHP supports ongoing clinical trials employing the internal DyNeuMo system (NCT05437393, NCT05197816) and our goal of developing and accelerating the deployment of novel neuromodulation approaches to treat cognitive dysfunction in patients with structural brain injuries and other etiologies.

Original publication

DOI

10.1109/NER52421.2023.10123754

Type

Conference paper

Publication Date

19/05/2023

Volume

2023

Keywords

Arousal Regulation, Central Thalamus, Closed-loop, Deep Brain Stimulation