Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This review considers research into the treatment of Usher syndrome, a deaf-blindness syndrome inherited in an autosomal recessive manner. Usher syndrome mutations are markedly heterogeneous, involving many different genes, and research grants are limited due to minimal patient populations. Furthermore, gene augmentation therapies are impossible in all but three Usher syndromes as the cDNA sequence exceeds the 4.7 kb AAV packaging limit. It is, therefore, vital to focus research efforts on alternative tools with the broadest applicability. The CRISPR field took off in recent years following the discovery of the DNA editing activity of Cas9 in 2012. New generations of CRISPR tools have succeeded the original CRISPR/Cas9 model to enable more sophisticated genomic amendments such as epigenetic modification and precise sequence alterations. This review will evaluate the most popular CRISPR tools to date: CRISPR/Cas9, base editing, and prime editing. It will consider these tools in terms of applicability (in relation to the ten most prevalent USH2A mutations), safety, efficiency, and in vivo delivery potential with the intention of guiding future research investment.

Original publication

DOI

10.3390/ijms24087603

Type

Journal article

Journal

Int J Mol Sci

Publication Date

20/04/2023

Volume

24

Keywords

CRISPR/Cas9, Usher syndrome, base-editing, gene therapy, genome engineering, prime-editing