Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cytochrome cd1 nitrite reductase is a haem-containing enzyme responsible for the reduction of nitrite into NO, a key step in the anaerobic respiratory process of denitrification. The active site of cytochrome cd1 contains the unique d1 haem cofactor, from which NO must be released. In general, reduced haems bind NO tightly relative to oxidized haems. In the present paper, we present experimental evidence that the reduced d1 haem of cytochrome cd1 from Paracoccus pantotrophus releases NO rapidly (k=65-200 s(-1)); this result suggests that NO release is the rate-limiting step of the catalytic cycle (turnover number=72 s(-1)). We also demonstrate, using a complex of the d1 haem and apomyoglobin, that the rapid dissociation of NO is largely controlled by the d1 haem cofactor itself. We present a reaction mechanism proposed to be applicable to all cytochromes cd1 and conclude that the d1 haem has evolved to have low affinity for NO, as compared with other ferrous haems.

Original publication




Journal article


Biochem J

Publication Date





217 - 225


Apoproteins, Bacterial Proteins, Biocatalysis, Cytochromes, Denitrification, Heme, Kinetics, Models, Molecular, Myoglobin, Nitric Oxide, Nitrite Reductases, Oxidation-Reduction, Paracoccus pantotrophus, Photolysis