Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Electrical stimulation of deep brain structures is an established therapy for drug-resistant focal epilepsy. The emerging implantable neural sensing and stimulating (INSS) technology enables simultaneous delivery of chronic deep brain stimulation (DBS) and recording of electrical brain activity from deep brain structures while patients live in their home environment. Long-term intracranial electroencephalography (iEEG) iEEG signals recorded by INSS devices represent an opportunity to investigate brain neurophysiology and how DBS affects neural circuits. However, novel algorithms and data processing pipelines need to be developed to facilitate research of these long-term iEEG signals. Early-stage analytical infrastructure development for INSS applications can be limited by lacking iEEG data that might not always be available. Here, we investigate the feasibility of utilizing the Deep Generative Adversarial Network (DCGAN) for synthetic iEEG data generation. We trained DCGAN using 3-second iEEG segments and validated synthetic iEEG usability by training a classification model, using synthetic iEEG only and providing a good classification performance on unseen real iEEG with an F1 score 0.849. Subsequently, we demonstrated the feasibility of utilizing the synthetic iEEG in the INSS application development by training a deep learning network for DBS artifact removal using synthetic data only and demonstrated the performance on real iEEG signals. The presented strategy of on-demand generating synthetic iEEG will benefit early-stage algorithm development for INSS applications.

Original publication

DOI

10.1109/SMC53654.2022.9945379

Type

Conference paper

Publication Date

01/01/2022

Volume

2022-October

Pages

1736 - 1741