Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The garden cross orb-spider, Araneus diadematus, shows behavioural responses to leg loss and regeneration that are reflected in the geometry of the web's capture spiral. We created a virtual spider robot that mimicked the web construction behaviour of thus handicapped real spiders. We used this approach to test the correctness and consistency of hypotheses about orb web construction. The behaviour of our virtual robot was implemented in a rule-based system supervising behaviour patterns that communicated with the robot's sensors and motors. By building the typical web of a nonhandicapped spider our first model failed and led to new observations on real spiders. We realized that in addition to leg position, leg posture could also be of importance. The implementation of this new hypothesis greatly improved the results of our simulation of a handicapped spider. Now simulated webs, like the real webs of handicapped spiders, had significantly more gaps in successive spiral turns compared with webs of nonhandicapped spiders. Moreover, webs built by the improved virtual spiders intercepted prey as well as the digitized real webs. However, the main factors that affected web interception frequency were prey size, size of capture area and individual variance; having a regenerated leg, surprisingly, was relatively unimportant for this trait. Copyright 1999 The Association for the Study of Animal Behaviour.

Original publication




Journal article


Anim Behav

Publication Date





223 - 232