Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The prophylactic use of topical antiviral agents has recently been validated by the reduction in human immunodeficiency virus (HIV) type 1 infection incidence seen using tonofovir-containing microbicides. In order to develop a wide-spectrum microbicide to prevent infection with a wide range of sexually transmitted viruses, we have previously reported the development of HIV-neutralizing aptamers and here report the isolation and characterization of aptamers that neutralize herpes simplex virus type 2 (HSV-2). These aptamers bind the envelope glycoprotein (gD), are potent (IC(50) of 20-50 nM) and are able to block infection pathways dependent on both major entry receptors, Nectin1 and HVEM. Structural analysis and mutagenesis of these aptamers reveal a core specificity element that could provide the basis for pharmaceutical development. As HSV-2 is a major risk factor for the acquisition of HIV-1, a microbicide capable of preventing HSV-2 infection would not only reduce the morbidity associated with HSV-2, but also that derived from HIV-1.

Original publication




Journal article


J Gen Virol

Publication Date





1493 - 1499


Animals, Antiviral Agents, Aptamers, Nucleotide, Base Sequence, Cell Adhesion Molecules, Herpes Simplex, Herpesvirus 1, Human, Herpesvirus 2, Human, Humans, Molecular Sequence Data, Nectins