Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The genomes of eukaryotes preserve a vast diversity of ancient viruses in the form of endogenous viral elements (EVEs). Study of this genomic fossil record provides insights into the diversity, origin, and evolution of viruses across geological timescales. In particular, Mavericks have emerged as one of the oldest groups of endogenous viruses infecting vertebrates (≥419 million years [My]). They have been found in the genomes of fish, amphibians, birds, and nonavian reptiles but had been overlooked in mammals. Thus, their evolutionary history and the causes of their demise in mammals remain puzzling questions. Here, we conducted a detailed evolutionary study of two Maverick integrations found on human chromosomes 7 and 8. We performed a comparative analysis of the integrations and determined their orthology across placental mammals (Eutheria) via the syntenic arrangement of neighboring genes. The integrations were absent at the orthologous sites in the genomes of marsupials and monotremes. These observations allowed us to reconstruct a time-calibrated phylogeny and infer the age of their most recent common ancestor at 127 to 262 My. In addition, we estimate the age of the individual integrations at ~102 My, which represents the oldest nonretroviral EVEs found in the human genome. Our findings suggest that active Mavericks still existed in the ancestors of modern mammals ~172 My ago (Jurassic Period) and potentially to the end of the Early Cretaceous. We hypothesize that Mavericks could have gone extinct in mammals from the evolution of an antiviral defense system or from reduced opportunities for transmission in terrestrial hosts. IMPORTANCE The genomes of vertebrates preserve a large diversity of endogenous viral elements (remnants of ancient viruses that accumulate in host genomes over evolutionary time). Although retroviruses account for the vast majority of these elements, diverse DNA viruses have also been found and novel lineages are being described. Here, we analyzed two elements found in the human genome belonging to an ancient group of DNA viruses called Mavericks. We studied their evolutionary history, finding that the elements are shared between humans and many different species of placental mammals. These observations suggest that the elements inserted at least ~102 million years ago (Mya) in the most recent common ancestor of placentals. We further estimated the age of the viral ancestor at around 127 to 262 My. Our results provide evidence for some of the oldest viral integrations in the human genome and insights into the ancient interactions of viruses with the ancestors of modern-day mammals.

Original publication

DOI

10.1128/jvi.00933-22

Type

Journal article

Journal

J Virol

Publication Date

27/10/2022

Keywords

EVEs, Homo sapiens, comparative genomics, endogenous viral elements, paleovirology