Reproductive dispersion and damping time scale with life-history speed.
Jiang S., Jaggi H., Zuo W., Oli MK., Coulson T., Gaillard J-M., Tuljapurkar S.
Iteroparous species may reproduce at many different ages, resulting in a reproductive dispersion that affects the damping of population perturbations, and varies among life histories. Since generation time ( T c $$ {T}_c $$ ) is known to capture aspects of life-history variation, such as life-history speed, does T c $$ {T}_c $$ also determine reproductive dispersion ( S $$ S $$ ) or damping time ( τ $$ \tau $$ )? Using phylogenetically corrected analyses on 633 species of animals and plants, we find, firstly, that reproductive dispersion S $$ S $$ scales isometrically with T c $$ {T}_c $$ . Secondly, and unexpectedly, we find that the damping time ( τ $$ \tau $$ ) does not scale isometrically with generation time, but instead changes only as T c b $$ {T}_c^b $$ with b < 1 $$ b<1 $$ (also, there is a similar scaling with S $$ S $$ ). This non-isometric scaling implies a novel demographic contrast: increasing generation times correspond to a proportional increase in reproductive dispersion, but only to a slower increase in the damping time. Thus, damping times are partly decoupled from the slow-fast continuum, and are determined by factors other than allometric constraints.