Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dissipative systems evolve in the preferred temporal direction indicated by the thermodynamic arrow of time. The fundamental nature of this temporal asymmetry led us to hypothesize its presence in the neural activity evoked by conscious perception of the physical world, and thus its covariance with the level of conscious awareness. We implemented a data-driven deep learning framework to decode the temporal inversion of electrocorticography signals acquired from non-human primates. Brain activity time series recorded during conscious wakefulness could be distinguished from their inverted counterparts with high accuracy, both using frequency and phase information. However, classification accuracy was reduced for data acquired during deep sleep and under ketamine-induced anesthesia; moreover, the predictions obtained from multiple independent neural networks were less consistent for sleep and anesthesia than for conscious wakefulness. Finally, the analysis of feature importance scores highlighted transitions between slow ($\approx$20 Hz) and fast frequencies (>40 Hz) as the main contributors to the temporal asymmetry observed during conscious wakefulness. Our results show that a preferred temporal direction is manifest in the neural activity evoked by conscious mentation and in the phenomenology of the passage of time, establishing common ground to tackle the relationship between brain and subjective experience.

Original publication




Journal article


Cereb Cortex

Publication Date





1856 - 1865


ECoG, consciousness, ketamine, sleep, time’s arrow, Animals, Consciousness, Wakefulness, Electrocorticography, Sleep, Ketamine, Brain