Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The activity of functional brain networks is responsible for the emergence of time-varying cognition and behaviour. Accordingly, time-varying correlations (Functional Connectivity) in resting fMRI have been shown to be predictive of behavioural traits, and psychiatric and neurological conditions. Typically, methods that measure time varying Functional Connectivity (FC), such as sliding windows approaches, do not separately model when changes occur in the mean activity levels from when changes occur in the FC, therefore conflating these two distinct types of modulation. We show that this can bias the estimation of time-varying FC to appear more stable over time than it actually is. Here, we propose an alternative approach that models changes in the mean brain activity and in the FC as being able to occur at different times to each other. We refer to this method as the Multi-dynamic Adversarial Generator Encoder (MAGE) model, which includes a model of the network dynamics that captures long-range time dependencies, and is estimated on fMRI data using principles of Generative Adversarial Networks. We evaluated the approach across several simulation studies and resting fMRI data from the Human Connectome Project (1003 subjects), as well as from UK Biobank (13301 subjects). Importantly, we find that separating fluctuations in the mean activity levels from those in the FC reveals much stronger changes in FC over time, and is a better predictor of individual behavioural variability.

Original publication

DOI

10.1016/j.media.2022.102366

Type

Journal article

Journal

Med Image Anal

Publication Date

04/2022

Volume

77

Keywords

Adversarial learning, Deep learning, Dynamic functional connectivity, Functional connectivity, Hidden Markov model, LSTM, RNNs, Time-Varying functional connectivity, Transient brain networks, Brain, Connectome, Humans, Magnetic Resonance Imaging, Nerve Net, Rest