Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The global tally of neurological disorders is exponentially rising and yet effective therapies for most remain evasive. There is a great deal of research into novel small molecules, immunotherapies and gene therapies to fill this therapeutic gap. We believe greater focus on plasma exchange as a research and clinical tool may provide useful insight into pathological mechanisms and effective treatment strategies. Plasma exchange has been traditionally used to treat antibody-mediated neurological diseases, such as myasthenia gravis and neuromyelitis optica, but there could be much wider future potential uses in neurology. Plasma exchange is not antibody specific, as it also removes a variety of other plasma-soluble factors, including age-related and disease-associated neurotoxic proteins, such as fibrinogen and amyloid. As research develops into the role of blood-brain barrier and immunological alterations in diseases not typically regarded as immune-driven, interest in neurotoxic plasma proteins grows. Here, we highlight that plasma exchange may have uses outside of antibody-mediated neurological diseases, by removing neurotoxic proteins from the systemic circulation.

Original publication

DOI

10.1016/j.jns.2021.120056

Type

Journal article

Journal

J Neurol Sci

Publication Date

11/11/2021

Keywords

Alzheimer's disease, Blood-brain barrier, Multiple sclerosis, Neurodegeneration, Stroke