Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: The anatomy of the posterolateral thalamus varies substantially between individuals, presenting a challenge for surgical targeting. Patient-specific, connectivity-based parcellation of the thalamus may effectively approximate the ventrocaudal nucleus (Vc). This remains to be robustly validated or assessed as a method to guide surgical targeting. The authors assessed the validity of connectivity-based parcellation for targeting the Vc and its potential for improving clinical outcomes of pain surgery. METHODS: A cohort of 19 patients with regional, chronic neuropathic pain underwent preoperative structural and diffusion MRI, then progressed to deep brain stimulation targeting the Vc based on traditional atlas coordinates. Surgical thalami were retrospectively segmented and then parcellated based on tractography estimates of thalamocortical connectivity. The location of each patient's electrode array was analyzed with respect to their primary somatosensory cortex (S1) parcel and compared across patients with reference to the thalamic homunculus. RESULTS: Ten patients achieved long-term pain relief. Sixty-one percent of an average array (interquartile range 42%-74%) was located in the S1 parcel. In patients who achieved long-term benefit from surgery, array location in the individually generated S1 parcels was medial for face pain, centromedial for arm pain, and centrolateral for leg pain. Patients who did not benefit from surgery did not follow this pattern. Standard stereotactic coordinates of electrode locations diverged from this pattern. CONCLUSIONS: Connectivity-based parcellation of the thalamus appears to be a reliable method for segmenting the Vc. Identifying the Vc in this way, and targeting mediolaterally as appropriate for the region of pain, merits exploration in an effort to increase the yield of successful surgical procedures.

Original publication




Journal article


J Neurosurg

Publication Date



1 - 8


deep brain stimulation, functional neurosurgery, neuropathic pain, tractography, ventral posterolateral nucleus, ventral posteromedial nucleus, ventrocaudal nucleus