Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The savannas of the Kenya-Tanzania borderland cover >100,000 km2 and is one of the most important regions globally for biodiversity conservation, particularly large mammals. The region also supports >1 million pastoralists and their livestock. In these systems, resources for both large mammals and pastoralists are highly variable in space and time and thus require connected landscapes. However, ongoing fragmentation of (semi-)natural vegetation by smallholder fencing and expansion of agriculture threatens this social-ecological system. Spatial data on fences and agricultural expansion are localized and dispersed among data owners and databases. Here, we synthesized data from several research groups and conservation NGOs and present the first release of the Landscape Dynamics (landDX) spatial-temporal database, covering ~30,000 km2 of southern Kenya. The data includes 31,000 livestock enclosures, nearly 40,000 kilometres of fencing, and 1,500 km2 of agricultural land. We provide caveats and interpretation of the different methodologies used. These data are useful to answer fundamental ecological questions, to quantify the rate of change of ecosystem function and wildlife populations, for conservation and livestock management, and for local and governmental spatial planning.

Original publication

DOI

10.1038/s41597-021-01100-9

Type

Journal article

Journal

Sci Data

Publication Date

18/01/2022

Volume

9

Keywords

Agriculture, Animals, Animals, Wild, Biodiversity, Conservation of Natural Resources, Databases, Factual, Grassland, Kenya, Livestock, Mammals, Spatio-Temporal Analysis, Tanzania