Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Transposable elements (TEs) regulate diverse biological processes, from early development to cancer. Expression of young TEs is difficult to measure with next-generation, single-cell sequencing technologies because their highly repetitive nature means that short complementary DNA reads cannot be unambiguously mapped to a specific locus. Single CELl LOng-read RNA-sequencing (CELLO-seq) combines long-read single cell RNA-sequencing with computational analyses to measure TE expression at unique loci. We used CELLO-seq to assess the widespread expression of TEs in two-cell mouse blastomeres as well as in human induced pluripotent stem cells. Across both species, old and young TEs showed evidence of locus-specific expression with simulations demonstrating that only a small number of very young elements in the mouse could not be mapped back to the reference with high confidence. Exploring the relationship between the expression of individual elements and putative regulators revealed large heterogeneity, with TEs within a class showing different patterns of correlation and suggesting distinct regulatory mechanisms.

Original publication

DOI

10.1038/s41587-021-01093-1

Type

Journal article

Journal

Nat Biotechnol

Publication Date

15/11/2021