Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Species are crucial to most branches of biological research, yet remain controversial in terms of definition, delimitation and reality. The difficulty of resolving the "species problem" stems from the tension between their theoretical concept as groups of evolving and highly variable organisms and the practical need for a stable and comparable unit of biology. Here we suggest that treating species as a heuristic can be consistent with a theoretical definition of what species are and with the practical means by which they are identified and delimited. Specifically, we suggest that theoretically species are heuristic since they comprise clusters of closely related individuals responding in a similar manner to comparable sets of evolutionary and ecological forces, whilst they are practically heuristic because they are identifiable by the congruence of contingent properties indicative of those forces. This reconciliation of the theoretical basis of species with their practical applications in biological research allows for a loose but relatively consistent definition of species based on the strategic analysis and integration of genotypic, phenotypic and ecotypic data.

Original publication




Journal article


Syst Biol

Publication Date



cohesion, heuristic, homeostasis, lineage, species problem