Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Spt4 is a transcription elongation factor with homologs in organisms with nucleosomes. Structural and in vitro studies implicate Spt4 in transcription through nucleosomes, and yet the in vivo function of Spt4 is unclear. Here, we assess the precise position of Spt4 during transcription and the consequences of the loss of Spt4 on RNA polymerase II (RNAPII) dynamics and nucleosome positioning in Saccharomyces cerevisiae. In the absence of Spt4, the spacing between gene-body nucleosomes increases and RNAPII accumulates upstream of the nucleosomal dyad, most dramatically at nucleosome +2. Spt4 associates with elongating RNAPII early in transcription, and its association dynamically changes depending on nucleosome positions. Together, our data show that Spt4 regulates early elongation dynamics, participates in co-transcriptional nucleosome positioning, and promotes RNAPII movement through the gene-body nucleosomes, especially the +2 nucleosome.

Original publication

DOI

10.1016/j.celrep.2021.109755

Type

Journal article

Journal

Cell Rep

Publication Date

28/09/2021

Volume

36

Keywords

MNase-seq, NET-seq, Nucleosome, RNAPII, Saccharomyces cerevisiae, TEF-seq, spt4, spt5, transcription elongation