Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Herpes Simplex Virus (HSV-1) immediate-early protein ICP22 interacts with cellular proteins to inhibit host cell gene expression and promote viral gene expression. ICP22 inhibits phosphorylation of Ser2 of the RNA polymerase II (pol II) carboxyl-terminal domain (CTD) and productive elongation of pol II. Here we show that ICP22 affects elongation of pol II through both the early-elongation checkpoint and the poly(A)-associated elongation checkpoint of a protein-coding gene model. Coimmunoprecipitation assays using tagged ICP22 expressed in human cells and pulldown assays with recombinant ICP22 in vitro coupled with mass spectrometry identify transcription elongation factors, including P-TEFb, additional CTD kinases and the FACT complex as interacting cellular factors. Using a photoreactive amino acid incorporated into ICP22, we found that L191, Y230 and C225 crosslink to both subunits of the FACT complex in cells. Our findings indicate that ICP22 interacts with critical elongation regulators to inhibit transcription elongation of cellular genes, which may be vital for HSV-1 pathogenesis. We also show that the HSV viral activator, VP16, has a region of structural similarity to the ICP22 region that interacts with elongation factors, suggesting a model where VP16 competes with ICP22 to deliver elongation factors to viral genes.

Original publication




Journal article



Publication Date