Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Many protein misfolding diseases (e.g. type II diabetes and Alzheimer's disease) are characterised by amyloid deposition. Human islet amyloid polypeptide (hIAPP, involved in type II diabetes) spontaneously undergoes liquid-liquid phase separation (LLPS) and a kinetically complex hydrogelation, both catalysed by hydrophobic-hydrophilic interfaces (e.g. air-water interface and/or phospholipids-water interfaces). Gelation of hIAPP phase-separated liquid droplets initiates amyloid aggregation and the formation of clusters of interconnected aggregates, which grow and fuse to eventually percolate the whole system. Droplet maturation into irreversible hydrogels via amyloid aggregation is thought to be behind the pathology of several diseases. Biological fluids contain a high volume fraction of macromolecules, leading to macromolecular crowding. Despite crowding agent addition in in vitro studies playing a significant role in changing protein phase diagrams, the mechanism underlying enhanced LLPS, and the effect(s) on stages beyond LLPS remain poorly or not characterised.We investigated the effect of macromolecular crowding and increased viscosity on the kinetics of hIAPP hydrogelation using rheology and the evolution of the system beyond LLPS by microscopy. We demonstrate that increased viscosity exacerbated the kinetic variability of hydrogelation and of the phase separated-aggregated system, whereas macromolecular crowding abolished heterogeneity. Increased viscosity also strengthened the gel meshwork and accelerated aggregate cluster fusion. In contrast, crowding either delayed cluster fusion onset (dextran) or promoted it (Ficoll). Our study highlights that an in vivo crowded environment would critically influence amyloid stages beyond LLPS and pathogenesis.

Original publication

DOI

10.1042/BCJ20210384

Type

Journal article

Journal

Biochem J

Publication Date

13/08/2021

Volume

478

Pages

3025 - 3046

Keywords

IAPP, amyloid, gelation, macromolecular crowding, phase separation