Interactions between Apolipoprotein E Metabolism and Retinal Inflammation in Age-Related Macular Degeneration.
Hu ML., Quinn J., Xue K.
Age-related macular degeneration (AMD) is a multifactorial retinal disorder that is a major global cause of severe visual impairment. The development of an effective therapy to treat geographic atrophy, the predominant form of AMD, remains elusive due to the incomplete understanding of its pathogenesis. Central to AMD diagnosis and pathology are the hallmark lipid and proteinaceous deposits, drusen and reticular pseudodrusen, that accumulate in the subretinal pigment epithelium and subretinal spaces, respectively. Age-related changes and environmental stressors, such as smoking and a high-fat diet, are believed to interact with the many genetic risk variants that have been identified in several major biochemical pathways, including lipoprotein metabolism and the complement system. The APOE gene, encoding apolipoprotein E (APOE), is a major genetic risk factor for AMD, with the APOE2 allele conferring increased risk and APOE4 conferring reduced risk, in comparison to the wildtype APOE3. Paradoxically, APOE4 is the main genetic risk factor in Alzheimer's disease, a disease with features of neuroinflammation and amyloid-beta deposition in common with AMD. The potential interactions of APOE with the complement system and amyloid-beta are discussed here to shed light on their roles in AMD pathogenesis, including in drusen biogenesis, immune cell activation and recruitment, and retinal inflammation.