Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Early language development is known to be under genetic influence, but the genes affecting normal variation in the general population remain largely elusive. Recent studies of disorder reported that variants of the CNTNAP2 gene are associated both with language deficits in specific language impairment (SLI) and with language delays in autism. We tested the hypothesis that these CNTNAP2 variants affect communicative behavior, measured at 2 years of age in a large epidemiological sample, the Western Australian Pregnancy Cohort (Raine) Study. Singlepoint analyses of 1149 children (606 males and 543 females) revealed patterns of association which were strikingly reminiscent of those observed in previous investigations of impaired language, centered on the same genetic markers and with a consistent direction of effect (rs2710102, P = 0.0239; rs759178, P = 0.0248). On the basis of these findings, we performed analyses of four-marker haplotypes of rs2710102-rs759178-rs17236239-rs2538976 and identified significant association (haplotype TTAA, P = 0.049; haplotype CGAG, [corrected] P = .0014). Our study suggests that common variants in the exon 13-15 region of CNTNAP2 influence early language acquisition, as assessed at age 2, in the general population. We propose that these CNTNAP2 variants increase susceptibility to SLI or autism when they occur together with other risk factors.

Original publication

DOI

10.1111/j.1601-183X.2011.00684.x

Type

Journal article

Journal

Genes Brain Behav

Publication Date

06/2011

Volume

10

Pages

451 - 456

Keywords

Australia, Autistic Disorder, Child, Preschool, Female, Genetic Association Studies, Genetic Predisposition to Disease, Genetic Variation, Genotype, Haplotypes, Humans, Language Development, Language Development Disorders, Male, Membrane Proteins, Nerve Tissue Proteins, Risk Factors