Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The motor threshold measurement is a standard in preintervention probing in TMS experiments. We aim to predict the motor threshold for near-rectangular stimuli to efficiently determine the motor threshold size before any experiments take place. Estimating the behavior of large-scale networks requires dynamically accurate and efficient modeling. We utilized a Hodgkin-Huxley (HH) type model to evaluate motor threshold values and computationally validated its function with known true threshold data from 50 participants trials from state-of-the-art published datasets. For monophasic, bidirectional, and unidirectional rectangular stimuli in posterior-anterior or anterior-posterior directions as generated by the cTMS device, computational modeling of the HH model captured the experimentally measured population-averaged motor threshold values at high precision (maximum error ≤ 8%). The convergence of our biophysically based modeling study with experimental data in humans reveals that the effect of the stimulus shape is strongly correlated with the activation kinetics of the voltage-gated ion channels. The proposed method can reliably predict motor threshold size using the conductance-based neuronal models and could therefore be embedded in new generation neurostimulators. Advancements in neural modeling will make it possible to enhance treatment procedures by reducing the number of delivered magnetic stimuli to participants.

Original publication

DOI

10.1155/2021/4716161

Type

Journal article

Journal

Comput Intell Neurosci

Publication Date

2021

Volume

2021

Keywords

Humans, Kinetics, Models, Neurological, Neurons