Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Introduction: Ketogenic diets have shown to improve glycaemic control in patients with type 2 diabetes. This study investigated the safety, tolerability, and effects on glycaemic control in patients with type 2 diabetes of an exogenous ketone monoester (KE) capable of inducing fasting-like elevations in serum β-hydroxybutyrate (βHB) without the need for caloric or carbohydrate restriction. Methods: Twenty one participants (14 men and 7 women, aged 45 ± 11 years) with insulin-independent type 2 diabetes, and unchanged hypoglycaemic medication for the previous 6 months, were recruited for this non-randomised interventional study. Participants wore intermittent scanning glucose monitors (IS-GM) for a total of 6 weeks and were given 25 ml of KE 3 times daily for 4 weeks. Serum electrolytes, acid-base status, and βHB concentrations were measured weekly and cardiovascular risk markers were measured before and after the intervention. The primary endpoints were safety and tolerability, with the secondary endpoint being glycaemic control. Results: The 21 participants consumed a total of 1,588 drinks (39.7 litres) of KE over the course of the intervention. Adverse reactions were mild and infrequent, including mild nausea, headache, and gastric discomfort following fewer than 0.5% of the drinks. Serum electrolyte concentrations, acid-base status, and renal function remained normal throughout the study. Compared to baseline, exogenous ketosis induced a significant decrease in all glycaemic control markers, including fructosamine (335 ± 60 μmol/L to 290 ± 49 μmol/L, p 

Original publication




Journal article


Endocrinology, Diabetes and Metabolism

Publication Date