Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Evidence concerning anatomical connectivities in the human brain is sparse and based largely on limited post-mortem observations. Diffusion tensor imaging has previously been used to define large white-matter tracts in the living human brain, but this technique has had limited success in tracing pathways into gray matter. Here we identified specific connections between human thalamus and cortex using a novel probabilistic tractography algorithm with diffusion imaging data. Classification of thalamic gray matter based on cortical connectivity patterns revealed distinct subregions whose locations correspond to nuclei described previously in histological studies. The connections that we found between thalamus and cortex were similar to those reported for non-human primates and were reproducible between individuals. Our results provide the first quantitative demonstration of reliable inference of anatomical connectivity between human gray matter structures using diffusion data and the first connectivity-based segmentation of gray matter.

Original publication

DOI

10.1038/nn1075

Type

Journal article

Journal

Nat Neurosci

Publication Date

07/2003

Volume

6

Pages

750 - 757

Keywords

Adult, Brain Mapping, Cerebral Cortex, Diffusion Magnetic Resonance Imaging, Female, Humans, Male, Neural Pathways, Probability, Reproducibility of Results, Thalamus