Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The deadly symptoms of malaria occur as Plasmodium parasites replicate within blood cells. Members of several variant surface protein families are expressed on infected blood cell surfaces. Of these, the largest and most ubiquitous are the Plasmodium-interspersed repeat (PIR) proteins, with more than 1,000 variants in some genomes. Their functions are mysterious, but differential pir gene expression associates with acute or chronic infection in a mouse malaria model. The membership of the PIR superfamily, and whether the family includes Plasmodium falciparum variant surface proteins, such as RIFINs and STEVORs, is controversial. Here we reveal the structure of the extracellular domain of a PIR from Plasmodium chabaudi We use structure-guided sequence analysis and molecular modeling to show that this fold is found across PIR proteins from mouse- and human-infective malaria parasites. Moreover, we show that RIFINs and STEVORs are not PIRs. This study provides a structure-guided definition of the PIRs and a molecular framework to understand their evolution.

Original publication




Journal article


Proc Natl Acad Sci U S A

Publication Date





32098 - 32104