Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A study was made of the day-night changes under controlled environmental conditions in the bulk-leaf water relations of Kalanchoë daigremontiana, a plant showing Crassulacean acid metabolism. In addition to nocturnal stomatal opening and net CO2 uptake, the leaves of well-watered plants showed high rates of gas exchange during the whole of the second part of the light period. Measurements with the pressure chamber showed that xylem tension increased during the night and then decreased towards a minimum at about midday; a significant increase in xylem tension was also seen in the late afternoon. Cell-sap osmotic pressure paralleled leaf malate content and was maximum at dawn and minimum at dusk. The relationship between these two variables indicated that the nocturnally synthesized malate was apparently behaving as an ideal osmoticum. To estimate bulk-leaf turgor pressure, values for water potential were derived by correcting the pressurechamber readings for the osmotic pressure of the xylem sap. This itself was found to depend on the malate content of the leaves. Bulk-leaf turgor pressure changed rhythmically during the day-night cycle; turgor was low during the late afternoon and for most of the night, but increased quickly to a maximum of 0.20 MPa around midday. In water-stressed plants, where net CO2 uptake was restricted to the dark period, there was also an increase in bulk-leaf turgor pressure at the start of the light period, but of reduced magnitude. Such changes in turgor pressure are likely to be of considerable ecological importance for the water economy of crassulacean-acid-metabolism plants growing in their natural habitats. © 1985 Springer-Verlag.

Original publication

DOI

10.1007/BF00393518

Type

Journal article

Journal

Planta

Publication Date

01/02/1985

Volume

163

Pages

272 - 282