Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The localization of sounds in space is based on spatial cues that arise from the acoustical properties of the head and external ears. Individual differences in localization cue values result from variability in the shape and dimensions of these structures. We have mapped spatial response fields of high-frequency neurons in ferret primary auditory cortex using virtual sound sources based either on the animal's own ears or on the ears of other subjects. For 73% of units, the response fields measured using the animals' own ears differed significantly in shape and/or position from those obtained using spatial cues from another ferret. The observed changes correlated with individual differences in the acoustics. These data are consistent with previous reports showing that humans localize less accurately when listening to virtual sounds from other individuals. Together these findings support the notion that neural mechanisms underlying auditory space perception are calibrated by experience to the properties of the individual.

Original publication

DOI

10.1152/jn.2001.86.2.1043

Type

Journal article

Journal

J Neurophysiol

Publication Date

08/2001

Volume

86

Pages

1043 - 1046

Keywords

Acoustic Stimulation, Animals, Auditory Cortex, Electrophysiology, Ferrets, Neurons, Sound Localization