Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Most neurophysiological accounts of disparity selectivity in neurons of the primary visual cortex (V1) imply that they are selective for absolute retinal disparities. By contrast, a number of psychophysical observations indicate that relative disparities play a more important role in depth perception. During recordings from disparity selective neurons in area V1 of awake behaving monkeys, we used a disparity feedback loop () to add controlled amounts of absolute disparity to a display containing both absolute and relative disparities. This manipulation changed the absolute disparity of all the visible features in the display but left unchanged the relative disparities signalled by these features. The addition of absolute disparities produced clear changes in the neural responses to unchanged external stimuli, which were well predicted by the measured change in absolute disparity: in 45/53 cases, the neuron maintained a consistent firing pattern with respect to absolute disparity so that the manipulation created no significant change in the absolute disparity preferred by the neuron. No neuron in V1 maintained a consistent relationship with relative disparity. We conclude that the relative disparity signals used in primate depth perception are constructed outside area V1.

Type

Journal article

Journal

J Neurosci

Publication Date

01/07/1999

Volume

19

Pages

5602 - 5618

Keywords

Action Potentials, Animals, Depth Perception, Eye Movements, Feedback, Female, Macaca mulatta, Male, Models, Biological, Neurons, Photic Stimulation, Time Factors, Vision Disparity, Vision, Binocular, Visual Cortex, Wakefulness