Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

After a period of ventilatory acclimatization to high altitude (VAH), a degree of hyperventilation persists after relief of the hypoxic stimulus. This is likely, in part, to reflect the altered acid-base status, but it may also arise, in part, from the development during VAH of a component of carotid body (CB) activity that cannot be entirely suppressed by hyperoxia. To test this hypothesis, eight volunteers undergoing a simulated ascent of Mount Everest in a hypobaric chamber were acutely exposed to 30 min of hyperoxia at various stages of acclimatization. For the second 10 min of this exposure, the subjects were given an infusion of the CB inhibitor, dopamine (3 microg. kg(-1). min(-1)). Although there was both a significant rise in ventilation (P < 0.001) and a fall in end-tidal PCO(2) (P < 0.001) with VAH, there was no progressive effect of dopamine infusion on these variables with VAH. These results do not support a role for CB in generating the persistent hyperventilation that remains in hyperoxia after VAH.

Original publication




Journal article


J Appl Physiol (1985)

Publication Date





291 - 296


Acclimatization, Acid-Base Equilibrium, Adult, Altitude, Atmosphere Exposure Chambers, Atmospheric Pressure, Carbon Dioxide, Carotid Body, Chemoreceptor Cells, Hemoglobins, Humans, Hydrogen-Ion Concentration, Hyperoxia, Hypoxia, Male, Mountaineering