Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Studies of birds have made a fundamental contribution to elucidating sperm competition processes, experimentally demonstrating the role of individual mechanisms in competitive fertilization. However, the relative importance of these mechanisms and the way in which they interact under natural conditions remain largely unexplored. Here, we conduct a detailed behavioural study of freely mating replicate groups of red junglefowl, Gallus gallus, to predict the probability that competing males fertilize individual eggs over the course of 10-day trials. Remating frequently with a female and mating last increased a male's probability of fertilization, but only for eggs ovulated in the last days of a trial. Conversely, older males, and those mating with more polyandrous females, had consistently lower fertilization success. Similarly, resistance to a male's mating attempts, particularly by younger females, reduced fertilization probability. After considering these factors, male social status, partner relatedness and the estimated state of male extragonadal sperm reserves did not predict sperm competition outcomes. These results shed new light on sperm competition dynamics in taxa such as birds, with prolonged female sperm storage and staggered fertilizations. This article is part of the theme issue 'Fifty years of sperm competition'.

Original publication




Journal article


Philos Trans R Soc Lond B Biol Sci

Publication Date





mating order, passive sperm loss, paternity share, post-copulatory sexual selection, remating rates, reproductive senescence