Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Inherited retinal degenerations (IRDs) are a leading cause of blindness. Although gene-supplementation therapies have been developed, they are only available for a small proportion of recessive IRD mutations. In contrast, genome editing using clustered-regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated (Cas) systems could provide alternative therapeutic avenues for treating a wide range of genetic retinal diseases through targeted knockdown or correction of mutant alleles. Progress in this rapidly evolving field has been highlighted by recent Food and Drug Administration clinical trial approval for EDIT-101 (Editas Medicine, Inc., Cambridge, MA), which has demonstrated efficacious genome editing in a mouse model of CEP290-associated Leber congenital amaurosis and safety in nonhuman primates. Nonetheless, there remains a significant number of challenges to developing clinically viable retinal genome-editing therapies. In particular, IRD-causing mutations occur in more than 200 known genes, with considerable heterogeneity in mutation type and position within each gene. Additionally, there are remaining safety concerns over long-term expression of Cas9 in vivo. This review highlights (i) the technological advances in gene-editing technology, (ii) major safety concerns associated with retinal genome editing, and (iii) potential strategies for overcoming these challenges to develop clinical therapies.

Original publication

DOI

10.1089/hum.2020.231

Type

Journal article

Journal

Hum Gene Ther

Publication Date

03/2021

Volume

32

Pages

247 - 259

Keywords

CRISPR, gene editing, inherited retinal degenerations