Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

G protein coupled receptors (GPCRs) function as guanine nucleotide exchange factors (GEFs) at heterotrimeric G proteins, and conduct this role embedded in a lipid bilayer. Detergents are widely used to solubilise GPCRs for structural and biophysical analysis, but are poor mimics of the lipid bilayer and may be deleterious to protein function. Amphipathic polymers have emerged as promising alternatives to detergents, which maintain a lipid environment around a membrane protein during purification. Of these polymers, the polymethacrylate (PMA) polymers have potential advantages over the most popular styrene maleic acid (SMA) polymer, but to date have not been applied to purification of membrane proteins. Here we use a class A GPCR, neurotensin receptor 1 (NTSR1), to explore detergent-free purification using PMA. By using an NTSR1-eGFP fusion protein expressed in Sf9 cells, a range of solubilisation conditions were screened, demonstrating the importance of solubilisation temperature, pH, NaCl concentration and the relative amounts of polymer and membrane sample. PMA-solubilised NTSR1 displayed compatibility with standard purification protocols and millimolar divalent cation concentrations. Moreover, the receptor in PMA discs showed stimulation of both Gq and Gi1 heterotrimers to an extent that was greater than that for the detergent-solubilised receptor. PMA therefore represents a viable alternative to SMA for membrane protein purification and has a potentially broad utility in studying GPCRs and other membrane proteins.

Original publication




Journal article


Biochim Biophys Acta Biomembr

Publication Date



Detergent, GPCR, Lipids, Neurotensin, PMA, Polymer