Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Brain age is becoming a widely applied imaging-based biomarker of neural aging and potential proxy for brain integrity and health. We estimated multimodal and modality-specific brain age in the Whitehall II (WHII) MRI cohort using machine learning and imaging-derived measures of gray matter (GM) morphology, white matter microstructure (WM), and resting state functional connectivity (FC). The results showed that the prediction accuracy improved when multiple imaging modalities were included in the model (R2 = 0.30, 95% CI [0.24, 0.36]). The modality-specific GM and WM models showed similar performance (R2 = 0.22 [0.16, 0.27] and R2 = 0.24 [0.18, 0.30], respectively), while the FC model showed the lowest prediction accuracy (R2 = 0.002 [-0.005, 0.008]), indicating that the FC features were less related to chronological age compared to structural measures. Follow-up analyses showed that FC predictions were similarly low in a matched sub-sample from UK Biobank, and although FC predictions were consistently lower than GM predictions, the accuracy improved with increasing sample size and age range. Cardiovascular risk factors, including high blood pressure, alcohol intake, and stroke risk score, were each associated with brain aging in the WHII cohort. Blood pressure showed a stronger association with white matter compared to gray matter, while no differences in the associations of alcohol intake and stroke risk with these modalities were observed. In conclusion, machine-learning based brain age prediction can reduce the dimensionality of neuroimaging data to provide meaningful biomarkers of individual brain aging. However, model performance depends on study-specific characteristics including sample size and age range, which may cause discrepancies in findings across studies.

Original publication

DOI

10.1016/j.neuroimage.2020.117292

Type

Journal article

Journal

Neuroimage

Publication Date

15/11/2020

Volume

222

Keywords

Brain age prediction, Cardiovascular risk, Machine learning, Multimodal MRI, Aged, Aging, Brain, Cardiovascular Diseases, Cognition, Female, Gray Matter, Heart Disease Risk Factors, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Neuroimaging, Risk Factors, White Matter