Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The possibility that we will have to invest effort influences our future choice behavior. Indeed deciding whether an action is actually worth taking is a key element in the expression of human apathy or inertia. There is a well developed literature on brain activity related to the anticipation of effort, but how effort affects actual choice is less well understood. Furthermore, prior work is largely restricted to mental as opposed to physical effort or has confounded temporal with effortful costs. Here we investigated choice behavior and brain activity, using functional magnetic resonance imaging, in a study where healthy participants are required to make decisions between effortful gripping, where the factors of force (high and low) and reward (high and low) were varied, and a choice of merely holding a grip device for minimal monetary reward. Behaviorally, we show that force level influences the likelihood of choosing an effortful grip. We observed greater activity in the putamen when participants opt to grip an option with low effort compared with when they opt to grip an option with high effort. The results suggest that, over and above a nonspecific role in movement anticipation and salience, the putamen plays a crucial role in computations for choice that involves effort costs.

Original publication

DOI

10.1152/jn.00027.2010

Type

Journal article

Journal

J Neurophysiol

Publication Date

07/2010

Volume

104

Pages

313 - 321

Keywords

Adult, Choice Behavior, Corpus Striatum, Cues, Decision Making, Female, Hand Strength, Humans, Image Processing, Computer-Assisted, Linear Models, Magnetic Resonance Imaging, Male, Physical Stimulation, Psychomotor Performance, Putamen, Reaction Time, Touch Perception