A prediction model of working memory across health and psychiatric disease using whole-brain functional connectivity.
Yamashita M., Yoshihara Y., Hashimoto R., Yahata N., Ichikawa N., Sakai Y., Yamada T., Matsukawa N., Okada G., Tanaka SC., Kasai K., Kato N., Okamoto Y., Seymour B., Takahashi H., Kawato M., Imamizu H.
Working memory deficits are present in many neuropsychiatric diseases with diagnosis-related severity. However, it is unknown whether this common behavioral abnormality is a continuum explained by a neural mechanism shared across diseases or a set of discrete dysfunctions. Here, we performed predictive modeling to examine working memory ability (WMA) as a function of normative whole-brain connectivity across psychiatric diseases. We built a quantitative model for letter three-back task performance in healthy participants, using resting state functional magnetic resonance imaging (rs-fMRI). This normative model was applied to independent participants (N = 965) including four psychiatric diagnoses. Individual's predicted WMA significantly correlated with a measured WMA in both healthy population and schizophrenia. Our predicted effect size estimates on WMA impairment were comparable to previous meta-analysis results. These results suggest a general association between brain connectivity and working memory ability applicable commonly to health and psychiatric diseases.