Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: Heart failure (HF) is a chronic and common condition with a rising prevalence, especially in the elderly. Morbidity and mortality rates in people with HF are similar to those with common forms of cancer. Clinical guidelines highlight the need for more detailed prognostic information to optimise treatment and care planning for people with HF. Besides proven prognostic biomarkers and numerous newly developed prognostic models for HF clinical outcomes, no risk stratification models have been adequately established. Through a number of linked systematic reviews, we aim to assess the quality of the existing models with biomarkers in HF and summarise the evidence they present. Methods: We will search MEDLINE, EMBASE, Web of Science Core Collection, and the prognostic studies database maintained by the Cochrane Prognosis Methods Group combining sensitive published search filters, with no language restriction, from 1990 onwards. Independent pairs of reviewers will screen and extract data. Eligible studies will be those developing, validating, or updating any prognostic model with biomarkers for clinical outcomes in adults with any type of HF. Data will be extracted using a piloted form that combines published good practice guidelines for critical appraisal, data extraction, and risk of bias assessment of prediction modelling studies. Missing information on predictive performance measures will be sought by contacting authors or estimated from available information when possible. If sufficient high quality and homogeneous data are available, we will meta-analyse the predictive performance of identified models. Sources of between-study heterogeneity will be explored through meta-regression using pre-defined study-level covariates. Results will be reported narratively if study quality is deemed to be low or if the between-study heterogeneity is high. Sensitivity analyses for risk of bias impact will be performed. Discussion: This project aims to appraise and summarise the methodological conduct and predictive performance of existing clinically homogeneous HF prognostic models in separate systematic reviews.Registration: PROSPERO registration number CRD42019086990.

Original publication

DOI

10.1186/s41512-020-00081-4

Type

Journal article

Journal

Diagn Progn Res

Publication Date

2020

Volume

4

Keywords

Acute heart failure, Biomarkers, CHARMS, Chronic heart failure, Decompensated heart failure, PROBAST, Prediction accuracy, Prediction rule, Prognosis, Risk score