Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The reduction of plant diversity following eutrophication threatens many ecosystems worldwide. Yet, the mechanisms by which species are lost following nutrient enrichment are still not completely understood, nor are the details of when such mechanisms act during the growing season, which hampers understanding and the development of mitigation strategies.Using a common garden competition experiment, we found that early-season differences in growth rates among five perennial grass species measured in monoculture predicted short-term competitive dominance in pairwise combinations and that the proportion of variance explained was particularly greater under a fertilization treatment.We also examined the role of early-season growth rate in determining the outcome of competition along an experimental nutrient gradient in an alpine meadow. Early differences in growth rate between species predicted short-term competitive dominance under both ambient and fertilized conditions and competitive exclusion under fertilized conditions.The results of these two studies suggest that plant species growing faster during the early stage of the growing season gain a competitive advantage over species that initially grow more slowly, and that this advantage is magnified under fertilization. This finding is consistent with the theory of asymmetric competition for light in which fast-growing species can intercept incident light and hence outcompete and exclude slower-growing (and hence shorter) species. We predict that the current chronic nutrient inputs into many terrestrial ecosystems worldwide will reduce plant diversity and maintain a low biodiversity state by continuously favoring fast-growing species. Biodiversity management strategies should focus on controlling nutrient inputs and reducing the growth of fast-growing species early in the season.

Original publication




Journal article


Ecol Evol

Publication Date





10116 - 10129


Eutrophication, I* theory, R* theory, competitive dominance, diversity loss, early growing season, exclusion, growth rate, short‐term competition