Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Quartz crystal microbalance/heat conduction calorimetry (QCM/HCC) is a new measurement technology that has been used to monitor simultaneously the mass and motional resistance of a thin film in conjunction with the heat flow produced by a chemical change in the film initiated by reaction with a gas. In this work we examine the applicability of the QCM/HCC in detecting chemical changes at the solution/thin film interface. Human serum albumin (HSA) was bound to the gold electrode of a 5 MHz AT-cut quartz resonator using three types of linkers and then exposed to buffered solutions of the anticoagulant drug warfarin. Changes in resonator frequency and motional resistance as well as changes in heat flow produced by warfarin binding to HSA were monitored as a function of the warfarin concentration. Differences in frequency and motional resistance changes depend upon the linker and vary both in magnitude and sign, whereas the integrated heat signal is proportional to the concentration of warfarin and independent of the linker chemistry. Quartz crystal microbalance/heat conduction calorimetry can thus be a useful tool for studying protein-ligand interactions at the solution-surface interface, even though the quartz resonator does not behave as a microbalance.

Original publication




Conference paper

Publication Date





1483 - 1489


Anticoagulants, Calorimetry, Humans, Microchemistry, Protein Binding, Serum Albumin, Warfarin