Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The ability of five staining techniques, originally developed for the rapid identification of Cryptosporidium spp. oocysts in faecal samples, to detect oocysts in water and water-related samples was assessed. All the stains used (modified Ziehl Neelsen, auramine-phenol (Lempert), Wright-Giemsa, safranin-methylene blue and FITC-labelled monoclonal antibody) stained oocysts after storage in water for 2 months at 4 degrees C (71-89% of control values). Storage of oocysts below 0 degrees C greatly reduced the staining ability of auramine-phenol. With the exception of oocysts stored in raw and final waters, the histochemical stains proved less useful in detecting oocysts than the monoclonal antibody. Organisms of similar size and shape took up these stains, causing confusion in interpretation. Cold Ziehl Neelsen and the FITC-labelled monoclonal antibody were best at identifying oocysts from a waterborne outbreak. Screening with a fluorescent antibody, followed by confirmation with cold Ziehl Neelsen, where possible, are the currently recommended procedures for the detection of oocysts in water-related samples.

Original publication




Journal article



Publication Date



99 Pt 3


323 - 327


Animals, Coccidia, Cryptosporidium, Staining and Labeling, Water