Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Brenneria species are bacterial plant pathogens mainly affecting woody plants. Association of all members with devastating disorders (e. g. acute oak decline in Iran and UK) are due to adaptation and pathogenic behavior in response to host and environmental factors. Some species, including B. goodwinii, B. salicis and B. nigrifluens, also show endophytic residence. Here we show that all species including novel Brenneria sp. are closely related. Gene-based and genome/pangenome-based phylogeny divide the genus into two distinct lineages, Brenneria clade A and B. The two clades were functionally distinct and were consistent with their common and special potential activities as determined via annotation of functional domains. Pangenome analysis demonstrated that the core pathogenicity factors were highly conserved, a hrp gene cluster encoding a type III secretion system was found in all species except B. corticis. An extensive repertoire of candidate virulence factors was identified. Comparative genomics indicated a repertoire of plant cell wall degrading enzymes (PCDWs), metabolites/antibiotics, and numerous prophages providing new insights into Brenneria-host interactions and appropriate targets for further characterization. This work not only documented the genetic differentiation of Brenneria species but also delineates a more functionally driven understanding of Brenneria by comparison with relevant Pectobacteriaceae thereby substantially enriching the extent of information available for functional genomic investigations.

Original publication

DOI

10.1094/PHYTO-04-20-0129-FI

Type

Journal article

Journal

Phytopathology

Publication Date

14/05/2020

Keywords

Analytical and theoretical plant pathology, Bacteriology