Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ABSTRACT Subplate neurons (SPNs) are a transient neuronal population shown to play a key role in nascent sensory processing relaying thalamic information to the developing cerebral cortex. However there is little understanding of how heterogeneity within this population relates to emergent function. To address this question we employed optical and electrophysiological technologies to investigate the synaptic connectivity of SPNs defined by expression of the Lpar1-EGFP transgene through the first postnatal week in primary whisker somatosensory cortex (S1BF) in mouse. Our data identify that the Lpar1-EGFP SPNs represent two morphological subtypes: (1) transient, fusiform SPNs with axons largely restricted to the subplate zone; (2) pyramidal SPNs with axon collaterals that traverse the overlying cortex to extend through the marginal zone. Laser scanning photostimulation of caged glutamate was used to determine columnar glutamatergic and GABAergic input onto both of these SPN subtypes. These experiments revealed that the former receive translaminar input from more superficial cortical layers up until the emergence of the whisker barrels (~postnatal (P)5). In contrast, pyramidal SPNs only receive local input from the adjacent subplate network at early ages but then at later ages can acquire varied input from the overlying cortex. Combined electrical stimulation of the ventral posterior nucleus of the thalamus and optogenetic activation of thalamic afferents in thalamocortical slice preparations revealed that Lpar1-EGFP SPNs only receive sparse thalamic innervation during early postnatal development. Taken together, these data reveal two components of the postnatal network that interpret sparse thalamic input to direct the emergent columnar structure of neonatal somatosensory cortex.

Original publication

DOI

10.1101/2020.05.12.088450

Type

Journal article

Journal

Biorxive

Publication Date

13/05/2020