Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2019 Institut d'Estadistica de Catalunya. All rights reserved. False discovery rate (FDR) control is important in multiple testing scenarios that are common in neuroimaging experiments, and p-values from such experiments may often arise from some discretely supported distribution or may be grouped in some way. Two situations that may lead to discretely supported distributions are when the p-values arise from Monte Carlo or permutation tests are used. Grouped p-values may occur when p-values are quantized for storage. In the neuroimaging context, grouped p-values may occur when data are stored in an integer-encoded form. We present a method for FDR control that is applicable in cases where only p-values are available for inference, and when those p-values are discretely supported or grouped. We assess our method via a comprehensive set of simulation scenarios and find that our method can outperform commonly used FDR control schemes in various cases. An implementation to a mouse imaging data set is used as an example to demonstrate the applicability of our approach.

Original publication




Journal article



Publication Date





237 - 258