Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Vaccinia virus (VV) egress has been studied using confocal, video, and electron microscopy. Previously, intracellular-enveloped virus (IEV) particles were proposed to induce the polymerization of actin tails, which propel IEV particles to the cell surface. However, data presented support an alternative model in which microtubules transport virions to the cell surface and actin tails form beneath cell-associated enveloped virus (CEV) particles at the cell surface. Thus, VV is unique in using both microtubules and actin filaments for egress. The following data support this proposal. (a) Microscopy detected actin tails at the surface but not the center of cells. (b) VV mutants lacking the A33R, A34R, or A36R proteins are unable to induce actin tail formation but produce CEV and extracellular-enveloped virus. (c) CEV formation is inhibited by nocodazole but not cytochalasin D or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine (PP1). (d) IEV particles tagged with the enhanced green fluorescent protein fused to the VV B5R protein moved inside cells at 60 microm/min. This movement was stop-start, was along defined pathways, and was inhibited reversibly by nocodazole. This velocity was 20-fold greater than VV movement on actin tails and consonant with the rate of movement of organelles along microtubules.


Journal article


J Cell Biol

Publication Date





389 - 402


Actin Cytoskeleton, Actins, Animals, Biological Transport, Active, Carrier Proteins, Cell Line, Cell Membrane, Endoribonucleases, Enzyme Inhibitors, Green Fluorescent Proteins, Humans, Intracellular Signaling Peptides and Proteins, Luminescent Proteins, Membrane Glycoproteins, Microscopy, Confocal, Microscopy, Electron, Microscopy, Fluorescence, Microscopy, Phase-Contrast, Microtubules, Nocodazole, Phosphoprotein Phosphatases, Phosphorylation, RNA-Binding Proteins, Recombinant Fusion Proteins, Time Factors, Tyrosine, Vaccinia virus, Viral Envelope Proteins, Viral Structural Proteins