Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Glyco-design of proteins is a powerful tool in fundamental studies of structure-function relationship and in obtaining profiles optimized for efficacy of therapeutic glycoproteins. Plants, particularly Nicotiana benthamiana, are attractive hosts to produce recombinant glycoproteins, and recent advances in glyco-engineering facilitate customized N-glycosylation of plant-derived glycoproteins. However, with exception of monoclonal antibodies, homogenous human-like β1,4-galactosylation is very hard to achieve in recombinant glycoproteins. Despite significant efforts to optimize the expression of β1,4-galactosyltransferase, many plant-derived glycoproteins still exhibit incomplete processed N-glycans with heterogeneous terminal galactosylation. The most obvious suspects to be involved in trimming terminal galactose residues are β-galactosidases (BGALs) from the glycosyl hydrolase family GH35. To elucidate the so far uncharacterized mechanisms leading to the trimming of terminal galactose residues from glycans of secreted proteins, we studied a N. benthamiana BGAL known to be active in the apoplast (NbBGAL1). Here, we determined the NbBGAL1 subcellular localization, substrate specificity and in planta biological activity. We show that NbBGAL1 can remove β1,4- and β1,3-galactose residues on both N- and O-glycans. Transient BGAL1 down-regulation by RNA interference (RNAi) and BGAL1 depletion by genome editing drastically reduce β-galactosidase activity in N. benthamiana and increase the amounts of fully galactosylated complex N-glycans on several plant-produced glycoproteins. Altogether, our data demonstrate that NbBGAL1 acts on galactosylated complex N-glycans of plant-produced glycoproteins.

Original publication

DOI

10.1111/pbi.13316

Type

Journal article

Journal

Plant Biotechnol J

Publication Date

14/12/2019

Keywords

Nicotiana benthamiana , CRISPR, Cas9, NbBGAL1, RNAi, glyco-engineering, β-galactosidases, β1,4-galactosylation