Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Ty transposable elements of Saccharomyces cerevisiae form a heterogeneous family within which two broad structural classes (I and II) exist. The two classes differ by two large substitutions and many restriction sites. We show that, like class I elements a class II element, Tyl-17, also appears to contain at least two major protein coding regions, designated TYA and TYB, and the organisational relationship of these regions has been conserved. The TYA genes of both classes encode proteins, designated p1 proteins, with an approximate molecular weight of 50 Kd and, despite considerable variation between the TYA regions at the DNA level, the structures of these proteins are remarkably similar. These observations strongly suggest that the p1 proteins of Ty elements are functionally significant and that they have been subject to selection.

Original publication




Journal article


Nucleic Acids Res

Publication Date





4097 - 4112


Amino Acid Sequence, Base Sequence, DNA Restriction Enzymes, DNA Transposable Elements, Escherichia coli, Fungal Proteins, Genetic Variation, Plasmids