Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Viruses induce an antiviral host response by activating the expression of antiviral host genes. However, viruses have evolved a wide range of strategies to counteract antiviral host responses. One of the strategies used by many viruses is the general inhibition of host gene expression, also referred to as a host shut-off mechanism. Here we discuss our recent findings that influenza virus infection results in the inhibition and degradation of host RNA polymerase II (Pol II) and that the viral RNA polymerase plays a critical role in this process. In particular, we found that Pol II is ubiquitylated in influenza virus infected cells and ubiquitylation can be induced by the expression of the RNA polymerase. Moreover, the expression of an antiviral host gene could be inhibited by the over-expression of the RNA polymerase. Both ubiquitylation and the inhibition of the host gene were dependent on the ability of the RNA polymerase to bind to Pol II. Further studies will be required to understand the interplay between the host and viral transcriptional machineries and to elucidate the exact molecular mechanisms that lead to the inhibition and degradation of Pol II as a result of viral RNA polymerase binding. These findings extend our understanding of how influenza virus counteracts antiviral host responses and underpin studies into the mechanisms by which the RNA polymerase determines virulence.

Original publication

DOI

10.4161/viru.1.5.12967

Type

Journal article

Journal

Virulence

Publication Date

09/2010

Volume

1

Pages

436 - 439

Keywords

Orthomyxoviridae, RNA Replicase, Viral Proteins, Virulence, Virulence Factors