Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Centrioles form cilia and centrosomes, organelles whose dysfunction is increasingly linked to human disease. Centriole duplication relies on a few conserved proteins (ZYG-1/Sak/Plk4, SAS-6, SAS-5/Ana2, and SAS-4), and is often initiated by the formation of an inner "cartwheel" structure. Here, we show that overexpressed Drosophila Sas-6 and Ana2 coassemble into extended tubules (SAStubules) that bear a striking structural resemblance to the inner cartwheel of the centriole. SAStubules specifically interact with centriole proximal ends, but extra DSas-6/Ana2 is only recruited onto centrioles when Sak/Plk4 kinase is also overexpressed. This extra centriolar DSas-6/Ana2 induces centriole overduplication and, surprisingly, increased centriole cohesion. Intriguingly, we observe tubules that are structurally similar to SAStubules linking the engaged centrioles in normal wild-type cells. We conclude that DSas-6 and Ana2 normally cooperate to drive the formation of the centriole inner cartwheel and that they promote both centriole duplication and centriole cohesion in a Sak/Plk4-dependent manner.

Original publication




Journal article


Dev Cell

Publication Date





913 - 919


Animals, Animals, Genetically Modified, Cell Cycle Proteins, Centrioles, Drosophila Proteins, Drosophila melanogaster, Gene Expression, Genes, Insect, Humans, Male, Microscopy, Electron, Transmission, Protein Multimerization, Protein-Serine-Threonine Kinases, Spermatocytes