Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Rooting cells and pollen tubes-key adaptative innovations that evolved during the colonization and subsequent radiation of plants on land-expand by tip growth. Tip growth relies on a tight coordination between the protoplast growth and the synthesis/remodeling of the external cell wall. In root hairs and pollen tubes of the seed plant Arabidopsis thaliana, cell wall integrity (CWI) mechanisms monitor this coordination through the Malectin-like receptor kinases (MLRs), such as AtANXUR1 and AtFERONIA, that act upstream of the AtMARIS PTI1-like kinase. Here, we show that rhizoid growth in the early diverging plant, Marchantia polymorpha, is also controlled by an MLR and PTI1-like signaling module. Rhizoids, root hairs, and pollen tubes respond similarly to disruption of MLR and PTI1-like encoding genes. Thus, the MLR and PTI1-like signaling module that controls CWI during tip growth is conserved between M. polymorpha and A. thaliana, suggesting that it was active in the common ancestor of land plants.

Original publication

DOI

10.1016/j.cub.2019.09.069

Type

Journal article

Journal

Curr Biol

Publication Date

22/10/2019

Keywords

ANXUR1, Arabidopsis, FERONIA, MARIS, cell wall integrity, marchantia, pollen tube, rhizoid, root hair, tip growth