Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Intracellular pH (pHi) is an important modulator of cardiac excitation and contraction, and a potent trigger of electrical arrhythmia. This review outlines the intracellular and membrane mechanisms that control pHi in the cardiac myocyte. We consider the kinetic regulation of sarcolemmal H+, OH- and HCO3- transporters by pH, and by receptor-coupled intracellular signalling systems. We also consider how activity of these pHi effector proteins is coordinated spatially in the myocardium by intracellular mobile buffer shuttles, gap junctional channels and carbonic anhydrase enzymes. Finally, we review the impact of pHi regulatory proteins on intracellular Ca2+ signalling, and their participation in clinical disorders such as myocardial ischaemia, maladaptive hypertrophy and heart failure. Such multiple effects emphasise the fundamental role that pHi regulation plays in the heart.

Original publication

DOI

10.1016/j.yjmcc.2008.10.024

Type

Journal article

Journal

J Mol Cell Cardiol

Publication Date

03/2009

Volume

46

Pages

318 - 331

Keywords

Animals, Calcium Signaling, Gap Junctions, Heart Diseases, Humans, Hydrogen-Ion Concentration, Ion Transport, Kinetics, Muscle Proteins, Myocardial Contraction, Myocardium, Myocytes, Cardiac