Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The advent of hyperpolarized (13)C magnetic resonance (MR) has provided new potential for the real-time visualization of in vivo metabolic processes. The aim of this work was to use hyperpolarized [1-(13)C]pyruvate as a metabolic tracer to assess noninvasively the flux through the mitochondrial enzyme complex pyruvate dehydrogenase (PDH) in the rat heart, by measuring the production of bicarbonate (H(13)CO(3)(-)), a byproduct of the PDH-catalyzed conversion of [1-(13)C]pyruvate to acetyl-CoA. By noninvasively observing a 74% decrease in H(13)CO(3)(-) production in fasted rats compared with fed controls, we have demonstrated that hyperpolarized (13)C MR is sensitive to physiological perturbations in PDH flux. Further, we evaluated the ability of the hyperpolarized (13)C MR technique to monitor disease progression by examining PDH flux before and 5 days after streptozotocin induction of type 1 diabetes. We detected decreased H(13)CO(3)(-) production with the onset of diabetes that correlated with disease severity. These observations were supported by in vitro investigations of PDH activity as reported in the literature and provided evidence that flux through the PDH enzyme complex can be monitored noninvasively, in vivo, by using hyperpolarized (13)C MR.

Original publication




Journal article


Proc Natl Acad Sci U S A

Publication Date





12051 - 12056


Animals, Carbon Isotopes, Diabetes Mellitus, Experimental, Fasting, Magnetic Resonance Spectroscopy, Male, Myocardium, Pyruvate Dehydrogenase Complex, Rats, Rats, Wistar, Streptozocin, Time Factors